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SIMPLIFIED DYNAMICS OF MULTILAYERED ORTHOTROPIC
VISCOELASTIC PLATESY
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Abstract—Based on a new approach to plate theory, procedures are developed for the dynamic analysis of
multilayered plates. They provide analytical simplifications as well as refinements of the physical description
which includes the skin effect. The various layers may be anisotropic and each of them may be constituted by
thinly laminated materials with stress couples. The damping due to viscoelasticity is evaluated by a method
which brings out the effectiveness of each component material. Detailed end conditions may be imposed at the
supports at various points across the thickness. It is shown that a plane strain analysis provides immediately
solutions of three-dimensional dynamics for multilayered plates with rectangular, triangular and circular plan
forms.

1. INTRODUCTION

THE fundamentals of a new approach to the mechanics of multilayered plates were outlined
previously [1] in the context of static problems. The methods may be applied to dynamical
problems and provide simplified procedures for the evaluation of natural modes and
vibration absorption of multilayered elastic and viscoelastic plates. The layers may be
orthotropic. This includes the case where the anisotropy of the individual layers is due to
athinly laminated structure. Inaddition microelastic properties of such layers are introduced
by the use of stress couples.

As already pointed out [1] an adequate theory should take into account the skin effect
of anisotropic solid mechanics. On the other hand the evaluation of damping requires
improved accuracy of the stress field analysis. This is due to the fact that for heterogeneous
materials, with uneven distribution of dissipative properties, resonance damping is quite
sensitive to localized values of the stress field. Finally the coupling of adhering layers, to
be evaluated correctly, should take into account the cross-sectional distortion which is
usually overlooked.

While accuracy is thus improved, simplicity of analysis is nevertheless retained. This is
in part due to the fact that it is sufficient to solve the problem for plane strain with a
sinusoidal distribution along the span. When this has been done solutions are readily
obtained for plates with various end conditions and for three-dimensional problems of
plates of various plan forms. This leads to the concept of “intrinsic wavelength” defined by
the corresponding plane strain solution.

The damping of viscoelastic plates is evaluated by a procedure of linearization which
brings out the influence of each individual layer on the overall vibration absorption
properties. This is illustrated by treating the single layer and the threelayered plate.

T This research has been sponsored by the A.F. Office of Scientific Research (SREM), 1400 Wilson Boulevard,
Arlington, Virginia 22209, through the European Office of Aerospace Research, OAR, United States Air Force,
under contract F 61052-69-C-0030.
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For three-dimensional problems the damping is the same or about the same as in the
plane-strain solution with the corresponding intrinsic wavelength. Note that the method
includes automatically the stretch-bending coupling of plates with asymmetric layers as
illustrated for the case of two layers [1].

A considerable refinement is obtained by using exponential branch solutions. This it
becomes possible to satisfy very detailed end conditions at the supports. For example we
may impose restraints such that zero displacements are prescribed at several points of
the end cross-sections. The same refinement is applicable to the edge condition in the
three-dimensional problem of a multilayered plate of circular plan form.

2. BASIC EQUATIONS AND APPROXIMATIONS

Plane strain in an elastic plate of thickness & is described by the displacements com-
ponents u, v with the x axis directed along the span and the y axis normal to the plate.
The strain components are

ov Ou

Ju ov _1”_
ox oyl

e = ~a-£ eyy = -a-; exy = "2' (21)

e

We assume the material to be elastically orthotropic with directions of symmetry along
x and y. If we neglect the stress o,, normal to the plate we may write the stress-strain
relations in the simplified form

O-Xx = 4Mexx
(2.2
o,y = 2Le,,
The coefficient M may be expressed by means of the anisotropic elastic coefficients of
the material [1]. The dynamical equilibrium equations are
do d*u

aaxx Xy __

éx Oy pﬁ

(2.3)
do,, 0o, _ @
ax  ay o

where p is the mass density. We note that the assumption o,, = 0 is introduced only in
the stress—strain relations {2.2) and not in the equilibrium equations (2.3).

The plate considered here may be inhomogeneous in such a way that it is either con-
tinuously or discontinuously stratified. Hence the coefficients M(y)L{y) and the mass
density p(y) may be functions of y.

Let the field be an harmonic function of time and sinusoidally distributed along x.
Hence we put

u = U(y)sin Ix e™
(2.4)

iar

v = Vcoslxe™,
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An additional approximation is introduced here by assuming V to be a constant equal to
the average displacement v across the thickness. The second of equations (2.2) yields
o, = 1)) sin Ix e™ (2.5)
with

au ) (2.6)

By eliminating o, and U between equations (2.2) and the first of equations (2.3) we obtain

df t di} P
= By 2.7
dy(4‘.m dy) L ! @7
with
a’p
W= M{1-2 ). 28)

Let the boundaries of the plate be located at y = +h/2 and assume the shear 7, = t(h/2),
1, = t©(—h/2) to be given at the top and bottom faces. With these boundary conditions
the function t(y) is obtained by integration of the differential equations (2.7) where M, L,
I, w and V play the role of parameters.

We finally integrate the second equilibrium equation (2.3) along y. We obtain

+hj2
= — J- w(y)dy~a’p,V (2.9)
~h{2
where
+hi2
P = f p(y)dy (2.10)
—h{2

is the total mass per unit area of plate face, while
[G)'y}l - [oyylz = gcos Ix e 2.1

represents the total normal load applied to the same unit area. Since 1(y) is known in
terms of V, equation (2.9) determines the deflection when the load g is given. When we
know a,,, the values of o, and u are determined by combining the first of equations (2.2)
with the first of equations (2.3). We obtain

1 dt
U= ime dy @1
M dz
e = Gar d—ycos Ix. (2.13)

Static analogy

An important aspect of these results as will appear in the applications resides in the
fact that equation (2.7) for t and the value {2.12) of U are the same as for the static case
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{o = 0} except that M is replaced by the “dynamic” coeflicient M. We also note that

a’p v\
vyl o (2.14)

Ut

where v, = o/l is the phase velocity of bending waves in the plate and vy, = 2./(M/p) is
the velocity of longitudinal compressional waves. In many problems v,/v), « 1 and we

may use the approximation
P = M. (2.15)

In this case the only difference with the static case resides in the additional term op,V of
equation (2.9).

3. MULTILAYERED PLATES AND VISCOELASTICITY

The foregoing results may be used to analyze the plate constituted by a superposition
of adherent homogeneous layers. Consider first a single layer of thickness # and constant
elastic coefficients M and L. The shear stress at the top and bottom of the layer are denoted
by 1, and t,, respectively. The differential equation (2.7) is readily integrated in this case.
Results are formally identical to those for the static case [1]. We find

7 = C, cosh fly+C, sinh fly—ILV (3.1)
where
C, = 1("f: +1,)+ILV !
S P cosh By
C, =~t,~1 )_w._l_
2 = T By
| (3.2)
= =lh
7 =5l
B = 2/(WM/L).

From equation {2.12) we derive the values U, and U, of U at the top and bottom of the
layer. They are

1
Ul == m(f1a+fzb)+CV
(3.3)
1
U2 = —-sz(flb+fza)“CV
where
a = tanh fy+ tanh By
1
- — 34
b = tanh By tanb By (34

1
¢ = —tanh By.
5 By



Simplified dynamics of multilayered orthotropic viscoelastic plates 495

The normal I« .d g cos Ix applied to this layer is obtained from equation (2.9) we find

q= —(t,+1,)c+hLV

1-%) —a2phV. (3.5)

For a plate constituted by n adhering layers the ith layer of thickness h; is characterized
by coefficients L;, M, and a mass density p;. Corresponding parameters are a;, b;, ¢;. W,;.
We denote by 7, and 1, , ; the shear stresses at the top and bottom of the ith layer respectively
and by U; and U, the displacements at the corresponding faces. The condition of
adherence of layers i and i+ 1 are obtained by equating the displacements at the interface.
Applying equations (3.3) we derive

By H(Ai+ A ()t + B Tie s = ~ (Gt IV (3.6)
where
a; b.
A, =—0" — Bi=—F—"— 3.7
4 JML) Y4 J(ML) 37

The recurrence equations (3.6) lead to the evaluation of the n—1 shear stresses z; at the
interfaces provided 1, and 7, , at the outerboundaries are given. The values 1, are found
in terms of the single unknown V. The latter is evaluated by considering the total load
q cos Ix applied to the multilayered plate. It is the sum of the individual loads g; cos Ix
acting on each layer. Hence

q4=734 (3.8)
where according to (3.5)

C;

q; = —(ti+‘c,-+1)c,-+lzhiLi(1 - ) ) V—aiphV. (3.9

1

We may write

q=— Y (t+14 )+ PKV—a?pV (3.10)
where
K= ZhiLi(Fﬁ) (3.11)
and p, = Y p;h; is the total mass per unit area of the plate. Since 7; is a known function
of V while g is given, equation (3.10) determines V.

Viscoelastic materials
Viscoelastic properties of the layers are taken into account by substituting operators

for the elastic coefficients M and L in the elastic theory. The general form of these operators
was derived from the principles of linear irreversible thermodynamics [2]. They are
M= f P MEpydr+ M+ Mp
o PFr
(3.12)
L= f 2 _1p)dr+L"+Lp
o P +r
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where p = d/dt. For harmonic oscillations p = iz and the operators become complex
quantities. In this case we may write

M = M+AM
A (3.13)
L =L+AL

where AM and AL denote the imaginary parts of M and L.

In practice two important simplifications may be introduced. Since M and L are generally
slowly varying functions of the frequency we replace them by constants equal to their
values in the vicinity of the significant frequency of the problem. For these real values and
assuming V to be known we solve equations (3.6) and (3.10) as in the elastic problem.
We then consider the imaginary increments, At; Ag AL, AM, to be small and linearize all
equations for these quantities with the same value of V. Using the solution of equations
(3.6) and (3.10) we derive the imaginary part Ag of g. This yields the complex values g+ Aqg
of the force required to produce the deflection V.

Laminated layers

The layers themselves may be composed of thinly laminated materials. Such a material
may be constituted by repeated groups each of which has a thickness /' and contains k
layers. The jth has a thickness h; and elastic coefficients M; and L. The laminated material
may then be replaced by an anisotropic elastic continuum of coefficients M, L, given by

i
(3.14)
1 Lo
A

where o; denotes the fraction of the total thickness h’ occupied by the jth layer. In addition
we must take into account the couple stress i.e. a moment per unit area equal to

M= b—;. (3.15)

In the present dynamic case the couple stress coefficient may be evaluated exactly as
before [1]. The same value is obtained as in the static case

hrZ J L
=103 Mjaf(l——i). (3.16)

J

The equilibrium equations (2.3) are also modified by the couple stress and as a consequence
equation (3.10) must be replaced by

g=— Y (n+1)c+PKV —a?p V+IV Y bk (3.17)

where b; is the couple stress coefficient of the ith layer.
This is immediately extended to viscoelastic laminated media replacing the coefficients
by the operators M,, L, b;.
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4. EXAMPLES OF EVALUATION OF DAMPING

We shall illustrate the method of evaluation of the damping on some specific cases of
simply supported plates. Consider the homogeneous anisotropic plate. The span s equal
to half the wavelength is

s = @.1)

n
i

According to the general procedure embodied in equations (3.6) and (3.10) the load g
is obtained by using the expression obtained for the static case and adding a dynamic
term —a?p,V. Hence

q = PhLV

(1—tanl;ﬁ N —a?p,V. @.2)

Although it is not essential we shall simplify the analysis by assuming %t = M hence
B = 2./(M/L).

For a viscoelastic material M and L are replaced by M +AM and L+AL where AM
and AL are the purely imaginary terms. The imaginary part of the load ¢ is represented by
Ag and evaluated by linearizing equation (4.2) with respect to AM and AL. We find

Aq = (F, AM+F, AL)PhV 4.3)
with
_ 3 tanh By B 1
~ B\ By cosh?By
3tanh By 1 1

F,=1-2 -
2 2 By +3 cosh? By

at resonance ¢ = 0 and the deflection V is entirely due to the load Ag. Expression (4.3)
provides an immediate evaluation of the relative importance of the longitudinal damping
AM or the shear damping AL on vibration attenuation. The values of F, and F, depend

on the anisotropy as measured by M/L and on thickness to span ratio h/s = 2y/n. Some
numerical values are given in Table 1.

F,
(4.4)

TABLE 1. VALUES F; AND F, AS FUNCTIONS OF M/L AND y

M/L =4 M/L =16
Y F, F, Y F, F,
1 0-125 0-63 0-5 0-0625 0-63
0-6 0-190 0-402 03 0.095 0-402
03 0-192 0-210 0-15 0-096 0-210
02 1131 0-039 0-10 0-065 0-039
0-1 0-046 0-007 0-05 0-023 0-007

It can be seen that for short spans the shear damping becomes predominant while the
opposite is true for large spans.
This result is applicable to the laminated plate where the values of L and M are those
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of the equivalent continuum given by (3.14). In addition we must introduce the complex
stress couple coefficient (3.16). The expression (4.3) of Ag will then contain an additional
term [*Vh Ab where Ab is the imaginary part of the stress couple coefficient (3.16).

As another example we consider the three-layered symmetric plates composed of a
core of thickness h, and coefficients M,L, sandwiched between two identical layers of
thickness h, and coefficients M, L,. Following the static analogy rule we write for the
load ¢

q 8(c; +c,)? ( cl) ( cz) oZp,
oz +2h L. {1 ——=)+1h, L - 4.5
WV = aJO L)+ 2Bsca gLy otk {1 [ thala{ =0 === @3)

The first three terms are the same as for the static case derived previously [1]. The resonant
frequency is obtained from equation (4.5) by putting ¢ = 0 and solving for a. For simplicity
we have introduced the approximation 9 = M. The damping is derived by evaluating the
imaginary increment Aq of ¢ in equation (4.5) due to imaginary increments AM, AL,
AM, AL, using linearized expansions with respect to these increments. The result is
obtained in the form

A
Tg =ty AM, +at, AM, +B, AL, + %, AL, (4.6)

which brings out separately the influence of the longitudinal and shear damping in each
of the two materials. The coefficients o/, ,.o#,, #,, #, are easily evaluated functions of L,,
M, ,L,,M,, hy, h,and l.

Again the result is applicable to the case where the layers themselves are constituted
by two different types of thinly laminated media, using the coefficients of the equivalent
anisotropic continuum for each layer and adding on the right side of equation (4.6) the
term (2Ab h+ Ab,h,)I® representing the damping due to the stress couples.

The result (4.6) is greatly simplified if the layers are composed of isotropic incompressible
materials, in which case we may put

Mi=L =p
M,=1L,=upu, 4.7
By =B, =2

In this case expression (4.5) becomes

g _ (tanh 2y, +tanh 2y,)’ _ 2
R — 2y2+2;11(2y1 tanh 2y,)+ p15(2y, — tanh 2y;)~o?p,/l.  (4.8)

#y tanh 4y, Ha

The imaginary part Ag of the load is given by

A
o L IR AN (49)
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with
2
=->——— 422y, —tanh 2
4 % tanh4y1+ (2y, —tanh 2y,)
(62
o, = 2 tanh 2y, +(2y, —tanh 2y,) 4.10)
2
@ = tanh 2y, 4+tanh 2y,
= T 1 .
— tanh 2y,

e
py tanh 4y, pp

The intrinsic damping of the materials is measured by the imaginary parts Ay, and Ay,
of the complex moduli £, and 4,. Expression (4.9) provides an immediate evaluation of
the effectiveness of each material in the overall vibration absorption. The coeflicients.
o/, and «/, depend on the rigidities y, and u, as well as the wavelength and on the thickness
of each layer.

Non sinusoidal loading

The foregoing results assume a simply supported plate with a loading distributed as a
half-sine wave. The method is obviously valid for an arbitrary loading provided the latter
is expanded in a series along the span. The results are then applied the various Fourier
components with a suitable value of / corresponding to each wavelength.

5. PLATES WITH BUILT-IN AND OTHER END CONDITIONS

Until now we have considered a plate of span s simply supported at both ends. However
the procedures developed for this case are quite general and may be extended to include
very sophisticated end conditions. It is best to illustrate the method by treating first a
simple example. We shall consider an homogeneous anisotropic plate without stress
couples. At both ends of the span s the plate is built-in meaning by this that at these points
it is rigidly attached so that the displacement of its faces are both zero.

In order to satisfy such boundary conditions we must consider another type of solution
which is exponential along the span instead of sinusoidal. Such solutions are immediately
derived from the trigonometric solutions (2.4) and (2.5) if we replace [ by ik. We write

v = V cos ikx €™ = V cosh kx e
u = iU(y) sin ikx e = U(y) sinh kx " (5.1)
o,, = —it(y)sin ikx €™ = 1(y) sinh kx e,

xy

As can be seen, in order to obtain real solutions, we must also replace U and t by —iU
and — iz, respectively.
The corresponding load distribution is

q cos ikx e'* = g cosh kx ™. (5.2)
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As a consequence the solution for the homogeneous anisotropic plate is derived quite

simply replacing ! by ik in equation (4.2). The load is

tanh $Bkh
1Bkh

Putting ¢ = 0 in the two equations (4.2) and (5.3) yields the resonant frequency o for the

sinusoidal and exponential solutions. We now write the condition that the resonant fre-
quencies are the same for both solutions. This yields the equation

) Atanh%ﬁlh 2 tan%ﬁkh_
1[1 | =F e (5.4)

q= kzhLV( - 1) —ap,V. (5.3)

which relates I and k. Strictly speaking this equation still contains the unknown « through
the parameter 9 as shown by equation (2.8). However as a first approximation we may
put M = M. As the reader can easily ascertain this simplification is not essential since
putting ¢ = 01in equation (4.2) provides an additional equation for «. However numerically
the procedure becomes much more cumbersome. In practice it is justified to put M = M
and if a refinement is needed we may correct the value of It after the frequency « has been
determined and thus obtain a second approximation.

Under these conditions we may consider (5.4) to be a functional relation defining k
as a function of . We may write it in the form

X(X —tanh X) = Y(tan Y- Y) (5.5)
with
X = 3Blh Y = 3Bkh. (5.6)

Numerical values of Y as a function of X are shown in Table 2. The function Y has an
infinite number of branches. Only the first two Y; and Y, have been tabulated.

TABLE 2. FIRST TWO BRANCHES OF THE SOLUTION OF EQUATION (5.5)

X Y, Y,
0 0 449
05 048 449
048 070 4.50
10 0-85 450
15 1.06 451
20 122 452
25 133 453
30 1-40 4.54
35 144 456
40 147 458

Consider now the combination of two solutions, one a sinusoidal solution with
| = 2X/Bh, the other an exponential solution corresponding to the first branch Y; with
k, = 2Y,/kh. The deflection v corresponding to the superposition of these two solutions is

v = Vcosix+ ¥V, coshk,x. (5.7)
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For simplicity the factor ' has been omitted. The associated spanwise displacement u is
provided by equations (2.4), (2.12) and (3.1), putting t, = 7, = 0 and substituting suitable
imaginary variables for the exponential portion of the solution. This yields

ye V sinh Bly inlx—V, sin fk,y

= "Bcosh g’ B cos 3Pk,

Denote the span by s and let the origin of x be located at the center of the span. The plate
is assumed to be built-in so that the displacements of the faces at the ends are equal to
zero. This is expressed by the conditions

u=v=70 for x= +s/2 y= +h/2 (5.9)

sinh k, x. (5.8)

Introducing these conditions in equations (5.7) and (5.8) yields

V cosils+V, coshtks = 0

(5.10)
V tanh 4Blh sin s~ V, tan $fk, hsinh 3k;s = 0.
Elimination of ¥ and V| leads to the characteristic equation
tanh Blh tan 1is+tan 1Bk, h tanh tk,s = 0. (5.11)

Since k is a function of I this determines the unknown [. There are an infinite number of
roots corresponding to the natural modes of vibration of the plate.

It is interesting to consider the limiting case for large span, hence for small values of /h.
In this case equation (5.4) is reduced to

1=k, (5.12)
and the characteristic equation (5.11) becomes
tanils+tanhils = 0 (5.13)
which is equivalent to
coshilscosls = 1. (5.14)

This result coincides with the value obtained from the classical theory of thin plates with
built-in ends [3]. The smallest root different from zero is in this case

Is = 4.730. (5.15)
Consider a case where the span is not large, for example
s =59
(5.16)
M
— = 6.
L
The first characteristic root of equation {5.11) yields the values
Is = 3944
(5.17)

ks = 240.
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For increasing anisotropy {M/L — o0) the shape of the first mode approaches a half sine
wave,

The method outlined here is very general. We may for example satisfy a number of
end conditions a lot more detailed than the one assumed here. This can be done by intro-
ducing a number of higher branches for the values of k. Equations (5.7) and (5.8) are then
replaced by

v = Vcoslx+ Y Vcoshkx
‘ (5.18)
u = VC(y)sinlx+ Y VC{y)sinh k;x

where the functions C(y)and C{y) are similar to those in equation (5.8) and k; are the various
branch solutions of equation (5.4) as functions of .

Using solutions (5.18) it is possible to derive the natural modes for very complicated
boundary conditions. For example it is possible to impose the conditions u = 0 v = 0 of
no displacement at several points of the cross section at both ends. This leads to a number
of homogeneous equations with an equal number of variables V and V; analogous to
equations (5.10). The solution of these equations leads to characteristic values for / and
determines the ratios V,/V. Hence

V= RV. (5.19)

Also other types of conditions may be considered which involve the vanishing of certain
stresses components at certain points of the end cross section or even mixed conditions
for stress and displacement.

In our example we have assumed the same end conditions at x = +s/2, with deflections
proportional to cos Ix and cosh kx. Unsymmetric end conditions may of course be treated
by adding deflections proportional to sin/x and sinh kx easily derived from those of
Section 2 by shifting the origin of x.

The case of a laminated plate is also analyzed by only a slight change in the analysis.
Equation (5.4) is simply replaced by

tanh i8ih\  bI* tan ipkh bk*
zz(lwa_“%%) . kz(—%—lﬁT—l) i (5:20)
2 2

where b is the stress couple coefficient due to the laminations.

The method is applicable just as readily to the completely general case of plates com-
posed of any number of layers some of which may be constituted by laminated materials
with stress couples. The expressions (5.18) for v and u are valid in this case. The function
C(y)corresponding to the sinusoidal solutions is derived by solving the recurrence equations
(3.6) expressing interfacial adherence. The functions C(y) corresponding to the exponential
solutions are obtained in a similar way by solving the same recurrence equations after
replacing ! by ik and t; by —it;. Hence again it is possible to satisfy detailed restraining
conditions at the ends of the span by requiring for example that u vanishes at a certain
number of points of the end cross-sections. Note that for conditions which are different
at each end, we simply need to complete expressions {5.18) by adding terms obtained by
interchanging sin /x with cos Ix and sinh k;x with cosh k;x.
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Finally we must evaluate the damping for built-in end condition. This may be done
by a straight forward procedure which again is applicable to the most general case of a
plate with any number of anisotropic layers with stress couples. For simplicity we consider
the case with identical boundary conditions at both ends. As we have just remarked this
does not restrict the generality. Consider one of the undamped natural mode shapes.
The deflection v(x) of this mode may be evaluated as outlined above. The result is

v(x) = Vf(x) (5.21)
where f(x) is of the form ‘
f(x) = cos Ix+ Y R;cosh k;x. (5.22)

Let us evaluate the load distribution required to maintain the deflection (5.21) at a given
frequency a.

This load distribution is obtained by adding the loads due to each of the terms cos Ix
and cosh k;x. They are evaluated from expression (3.17) after suitable changes for the
imaginary values associated with the exponential terms. Hence the load distribution is of
the form

a(x) = [$(x)+p*Y(x)]V (5.23)

where p = in. We choose the amplitudes V of the various modes as generalized coordinates
;. The corresponding displacements and loads are

vix) = q,f(x) (5.24)

q{x) = q[Lx)+ p*P(x)].
The following integral over the span s represents an operational invariant

52 ij ij
P =% Y vg;dx =43 (Z;+p*m;)aq;. (5.25)
- 52

The Lagrangian equations of this system may then be written in operational form

oP

20 0; (5.26)
where @, is the generalized force conjugate to q;. It is determined by the virtual work of
the actual load applied to the plate for a particular variation dq;. Since the generalized
coordinates are the natural modes the matrices Z;; and m;; are diagonal. They correspond
respectively to the potential and kinetic energies. Until now we have considered an elastic
plate. However for viscoelastic materials equations (5.26) remain formally the same.
This is a consequence of the general principle of viscoelastic correspondence introduced
by the author [4, 5] in operator-variational form. In this case the matrix elements become
operators Z, ;- They are obtained by substituting operators for the elastic and stress couple
coefficients of the various layers constituting the plate. Actually as done above it will be
convenient to linearize the operator by writing
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where AZ;; is the imaginary increment expressed as a linear function of the imaginary
increments of the operators for the various layers. The operational Lagrangian equations
(5.26) are now

j j
L(Zy+ABZa;+p" Y mya; = Q. (5.28)

This yields the phase and amplitude of the generalized coordinates q; for given applied
forces. Since equations (5.28) are in operational form they are well suited to the evaluation
of transients, by using the standard procedures of the operational calculus. Near resonance
the solution of this system is simplified. Consider for example resonance for the fundamental
mode q, . The first equation (5.28) reduces to

YAZ0;= Q. (5.29)

Since the resonant amplitude q, is large compared to the others, equation (5.29) is written
approximately

AZ 9, =0, (5.30)

which yields immediately the resonant amplitude in terms of the applied forces.

6. EXTENSION TO THREE-DIMENSIONAL DYNAMICS

We consider a triaxial coordinate system and a multilayered plate of completely
general type with layers paraliel to the xz plane. The y axis remains normal to the plate.
The material of the various layers is assumed to be transverse isotropic. The stress—strain
relations for a particular layer are

G = 4Me , +Ce,,
0,, = 4Me, +Ce,,

o, = 2Le,, 6.1)
o, = 2Le,,
G,x = ZLIZezx
with
_ Ou o — ?_vg
€Cox = 5x zz 62
= 2\ox oy
6.2)
_ lfow @
b= 3 dy @z
e = .I; au+a_w
= ldz ox
The displacement components are u, v, w.
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Isotropy in the xz plane requires the relation
2M ~1C = Ly,. 6.3

The elastic coefficients are functions of y.
Suppose we have determined a two dimensional sinusoidal solution such as (2.4) and
(2.5). Omitting the time factor e'*, it may be written

u = U(y)sin Ix
6.4)
v = Vcoslx.

In this expression U(y) is expressed in terms of =(y) by equation (2.12) and (y) itself is
obtained by integrating the differential equation (2.7} across the plate.
The corresponding normal load distribution is

g(x) = gcosix {6.5)

where ¢ is given by equation (2.9} or (3.17).
Since the material is transverse isotropic the solution (6.4) remains valid if we give it
an angle of rotation 6 around the y axis. This solution is now

u = U(y)cos 0 sin{&x +{z)
w = U(y)sin 8 sin{&x +{z)

v = Vcos(lx+{z) (66)
q(x, z) = qoos({x+{z)
with
E=1lcos@ { = Isin8. 6.7
The solution (6.6) may also be written
1 du
U= *T‘;U(Y)é‘}
1 v
W= - U0 (68)

g(x.z) = %v.

Substitution of the displacements in equations (6.1) and (6.2} yields the corresponding
stresses. These relations are invariant for any translation in the xz plane or rotation around
the y axis. An important consequence is that they remain valid for the large class of three-
dimensional solutions obtained by superposition of any number of two-dimensional
solutions each of which is given an arbitrary rotation and translation.

Rectangular plates

A simple application of this result is to plates of rectangular plan form simply supported
at the edges. We superpose two of the solutions (6.6) with values 6 and — 6 for the angle
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of rotation. The normal deflection is

v = 3V [cos(Ex+{z)+cos(Ex—{z)] = V cos Ex cos {z. 6.9)
The vertical displacement vanishes for

{z = +— (6.10)

=+
{x = £+ £

ST}

This corresponds to rectangular plate of sides s; and s, supported at the edge.
We derive

T n
¢=—  (=— (6.11)
St S2
and from equation (6.7)
s +s2
P =g+ =3 (6.12)
5153

This expresses the wave number ! of the basic two-dimensional solution. It may be referred
to as the “intrinsic” wave number. The intrinsic wavelength is then 27/l

It is interesting to note that for a square plate (s, = s,) the intrinsic wavelength is
equal to the diagonal s,./2.

The resonant frequency for the two dimensional solution corresponds to ¢ = 0. It is
the same as for the rectangular plate. Away from resonance g # 0 and the forced oscillation
corresponds to a loading

q(x, z) = g cos &x cos {z. (6.13)

We have stated that the solution corresponds to a simply supported plate at the edges,
hence free to rotate at these boundaries. That this is a good approximation follows from
the fact that the solutions are antisymmetric with respect to the edges. Hence only shear
stresses are present at the free edges. It is natural to assume that their cancellation is
absorbed almost entirely by the reactions at the support and induces only a negligible
plate deflection.

Higher modes of the plate are obtained by considering solutions for which &s; and
{s, are multiples of 7/2 as well as solution obtained by translations along x and z.

Forced oscillations under arbitrary load distributions may be derived by expending
g(x, z) in a double Fourier series and applying the foregoing solutions to each component.

Finally the three-dimensional solutions are valid for viscoelastic materials. We simply
substitute in expression (6.13) the corresponding complex value of g of the two-dimensional
case.

Triangular plates

Three-dimensional solutions are similarly obtained for a plate whose edges constitute
an equilateral triangle of side s which is simply supported at these edges. We write the
two-dimensional deflection as

v = Vsinlx (6.14)
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and evaluate the corresponding loading distribution

g{x) = gsin Ix (6.15)

where q is evaluated as indicated in Sections 2 and 3.
The two-dimensional solution (6.14) may be written

v = Vsin In;r (6.16)

where n, is a unit vector in the plane xz and r the coordinate vector in the same plane.
It represents a solution which has been rotated so that the crests are normal to n,. We
choose three vectors n; n, n, in such a way that

n,+n,+n, = 0. (6.17)

Hence they constitute an equilateral triangle and are oriented at 120° relative to each
other. We then superpose the three solutions corresponding to n,, n,, n;. We obtain

v(x,z) = V sin In;r+V sin m,xr + V sin In,r. (6.17a)
Using trigonometric identities and taking into account relation (6.17) we may write

v(x, z) = —4V sin(in,r) sin(} In,r) sinG i r). (6.18)
The corresponding load is

q(x, z) = —4qsinin,r) sin(im,r) sinGn,r). (6.19)

The deflection 1(x, z) is zero on the three lines

inr=n
thn,r=n (6.20)
%lng,r =T

which form an equilateral triangle. Let us orient n, along the x axis. Then v = 0 for x = 0
and }Ix = n. Hence the length of the edges of the triangle is

47
s NE] (6.21)
Then the intrinsic wavelength is equal to [\/ (3)/2]s.
By the same argument as for the rectangular plate it can be seen that the three-dimen-
sional solution (6.18) corresponds to a plate simply supported at the three edges.
For a viscoelastic plate g is replaced by the complex value of the two-dimensional
problem of the same intrinsic wavelength.

Circular plates

The three-dimensional dynamics of a plate of circular plan form may also be derived
from two-dimensional solutions. Consider first the sinusoidal solution

v = V cos(inr) (6.22)
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where n is the unit vector in the xz plane. We superpose an infinite number of such solutions
by integrating expression (6.22) for all directions of n in the xz plane. We obtain

2n
v=V f cos[lr cos(6—8,)] d8 (6.23)
0

where r is the magnitude of r and 6, is the angle between r and the x axis. The integral is
independent of 8, and equal to

2n
= Vf cos[lr cos 8] df. (6.24)
0
This is the well-known integral representation of the Bessel function J;. Hence
v = 2nVJy(lr). (6.25)
In the present case we also need the exponential solutions represented by
v; = V,cosh k{mr). (6.26)

It is obtained by replacing ! by ik; where k; are functions of ! representing the various
branch solutions of equations such as (5.19).
By the same process of integration for all directions n in the xz plane we obtain

v; = 2nVIok;r) (6.27)

where I, is the modified Bessel function. For this type of solution equations (6.8) for the
displacements and loads are replaced by

u = &Uj(y)g—’g
w; = E}I/juj(y)g—'j (6.28)
g(x,z) = %jv -
The deflection v(r) obtained by superposition of the solutions (6.25) and (6.27) is
o(r) = VJo(in+ i ViIokp). (6.29)

The factor 2z has been omitted since it may be incorporated in the values of V and V.
The corresponding radial displacement u, derive from equations (6.8) and (6.28) is of the
form

i
u, = VC(V)%];Q(lr)+ y Vjc,(y)%l-r?(k . (6.30)

We may impose buili-in conditions at the edge. This is expressed by putting v = u, = 0
at the edge r = R and at certain points of the boundary cross sections i.e. for a number of
values of y. This leads to homogeneous equations for V and V;and a corresponding charac-
teristic equation for [
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For a simply supported edge we evaluate the radial stress o,, from the displacements
using equations (6.1). We then put v = g,, = 0 for r = R and for a certain number of
values of y. This again determines the characteristic equation for ..

Finally the forced oscillation of the circular plate is evaluated for viscoelastic materials
using exactly the same procedure as in the two-dimensional case treated in Section 5.

The simplicity of this procedure which opens the way to the analysis of extremely
complex structures may be compared with current procedures [6, 7] which in spite of
very restrictive assumptions are much more involved analytically.
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AGcTpakT—Ha ocHOBE HOBOrO MOAX0Aa K TEOPUHM TUIACTHHOK AAIOTCS CIOCOOBI AMHAMMYECKOro aHAIK3a
MHOTOCTIOMHBIX TLTAaCTHHOK. OHH JAIOT KakK aHAJIMTHYECKHE YINPOLICHHA, TaK U YTOYHeHHE (H3NYe CKOH
3aNMCH, KOTOPOE YURThIBaeT 3 dexT MoBepXHOCTHOTO ¢nosi. PasHple CJIOW MOTYT ABJIATCH aHH3OTPOIHBIMH
M KaXAbl M3 HUX MOXKET OBITB COCTABIEHHLIM M3 IUTACTMHYATHIX MATEPHAJIOB, C MOMEHTHLIMM Hamps-
x)eHusiMH. Ompenensercss 3aTyXaHHE, BCIEICTBHE BA3KOYNPYTOCTH, METOAOM IOKa3BIBAIOINM 3ddex-
THBHOCTH KaXJOTO COCTaBIeHHOro Marepuaina. [loapoGHble KpaeBbie ycaoBusi MOFYT OBITB NOIy4€HbI
TIPH ONMHPAHMSAX B PA3HBIX TOYKAX, MO TOMIIMHE. YKAa3bIBAETCH, YTO aHANM3 MIOCKOro Ae¢GOpMHUPOBAKHOIO
COCTOSIHHSL [AA€T HEIOCPEACTBEHHBIE DELUEHUst TPEXMEPHON 3afayu OUHAMHKHM, AJII MHOIOC/IOMHEIX,
TIPAMOYTONBHBIX, TPEXYTOJILHBIX W KPYTJIbIX ILIACTHHOK.



